If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49n^2+6=55
We move all terms to the left:
49n^2+6-(55)=0
We add all the numbers together, and all the variables
49n^2-49=0
a = 49; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·49·(-49)
Δ = 9604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9604}=98$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-98}{2*49}=\frac{-98}{98} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+98}{2*49}=\frac{98}{98} =1 $
| 64k^2+5=41 | | 16p-3=22 | | 25n^2-6=94 | | -10x+x=-15 | | p^2+9=45 | | -10x+x=15 | | −3=2x−5 | | x-8=1/5 | | 3x=+6 | | 3/5x=14.55 | | 5(2x)-6=14 | | 4x+8=9x+4 | | 9y^2-36(y+2)^2=0 | | 18=x^2-13+2x-4 | | 4/5x-11=1 | | 16*x=76 | | 5X3/5(n+25)=5(10+2/5n | | C=50+5y | | 5y-2=22+y | | 5y-2=22 | | 3/5(n+25)=10 | | Y=-2x²-8x-5 | | (x+9)(x+7)=99 | | 2/3(6x+7)+2x=4x/3 | | 0.8x+2.8=0 | | 18x+30=6(2x-1 | | (x-2)3-(x-3)3=37 | | 9x+7(3-×)=2(×+8)+5 | | x+5=-×-5 | | 4x=3x²+7 | | x-4-7x=-28 | | 5x+1=x-19 |